
Capsules tutorial
Cher Bass

cher.bass@kcl.ac.uk
METRICS lab @ King’s College

CNNs have drawbacks

■ CNNs can learn low (edges,
colours) and high level (mouth,
nose, eyes) features

■ Orientational and relative spatial
relationships between features is
not captured

■ i.e. higher level features don’t
encode for pose (translation and
rotation)

■ Max pooling loses valuable
information

■ Requires large amounts of data
and augmentation to learn

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Ideas behind capsules

1. Can capture spatial relationships between objects/ features

– Using high dimensional “W Matrix” to encode these relationships

– Translation invariant

– Known to need less data

2. Can group these features into “capsules”

– Using “dynamic routing”

– Routes features on the fly

– Capsules encode for features closely related in feature space

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.

Capsules capture pose

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Capsules capture pose

Hinton, Geoffrey E., Sara Sabour, and Nicholas Frosst. "Matrix capsules with EM routing."
(2018).

How do capsules work?

Dynamic routing between capsules

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.

Dynamic routing

Softmax

Dynamic routing

Dot product

Dynamic routing

What is the purpose of the
squash function?

• Nonlinear activation
• Normalises the length between 0,1
• Does not change the direction of the vector
• This will allow the next step of the dynamic

routing to not be affected by the nonlinear layer,
as the direction of the vector is not changed

Dynamic routing

Dynamic routing - update step

CapsNet Architecture

CapsNet architecture

CapsNet architecture

Capsules learn representations

Loss function

Convolutional Capsules

The original capsules were not used much in the literature due to high computational cost
and slow training

■ W matrix multiplication (high dimensional matrix) – high memory requirement

■ Dynamic routing – slow to train

■ Was only applied to small images (28x28)

Convolutional capsules:

■ Reduced computation

■ Can be applied to larger images

■ Allow for image-to-image tasks

■ Spatial filters allows analysis of features

Convolutional Capsules

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

Convolutional Capsules

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

b shape = [in_caps, width, height,
out_caps]

Capsule applications

■ Segmentation

■ Conditional image
synthesis

■ Classification (MNIST)

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." International
Conference on Medical Imaging with Deep Learning. 2019.

Capsules for Object
Segmentation

Image synthesis with a
convolutional capsule GAN

Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." International Conference on
Medical Imaging with Deep Learning. 2019.

Qualitative results - features

Qualitative
results - image
synthesis
variations

Qualitative results - interpolation

Qualitative results- intermediate features

Code examples in pytorch

Code – W matrix multiplication

 def forward(self, x):

 batch_size = x.size(0)

 x = torch.stack([x] * self.num_capsules, dim=2).unsqueeze(4)

 x = x.permute(0, 3, 2, 1, 4)

 W = torch.cat([self.W] * batch_size, dim=0)

 u_hat = torch.matmul(W, x)

“W Matrix” multiplication

Code – dynamic routing
 b_ij = Variable(torch.zeros(1, self.in_channels, self.num_capsules, 1))

num_iterations = 3

 for iteration in range(num_iterations):

 c_ij = F.softmax(b_ij)

 c_ij = torch.cat([c_ij] * batch_size, dim=0).unsqueeze(4)

 s_j = (c_ij * u_hat).sum(dim=1, keepdim=True)

 v_j = self.squash(s_j)

 v_j= v_j.squeeze(1)

 if iteration < num_iterations - 1:

 temp = u_hat.permute(0, 2, 1, 3, 4).squeeze(4)

 temp2 = v_j

 a_ij = torch.matmul(temp, temp2).transpose(1,2)

 b_ij = b_ij + a_ij.mean(dim=0)

return v_j

b vector zero initialisation – notice shape

Routing x3 times

softmax

Dot product- sum out input capsule dim

Squash norm

b update step

Code – convolutional capsules

 def forward(self, x):

 batch_size = x.size(0)

 in_width, in_height = x.size(3), x.size(4)

 x = x.view(batch_size*self.in_capsules, self.in_channels, in_width, in_height)

 u_hat = self.conv2d(x)

 out_width, out_height = u_hat.size(2), u_hat.size(3)

 u_hat = u_hat.view(batch_size, self.in_capsules, out_width, out_height,
self.out_capsules, self.out_channels)

Weight sharing
between capsules

Code – local dynamic routing
b_ij = Variable(torch.zeros(1, self.in_capsules, out_width, out_height,
self.out_capsules))

 for iteration in range(self.num_routes):

 c_ij = F.softmax(b_ij, dim=1)

 c_ij = torch.cat([c_ij] * batch_size, dim=0).unsqueeze(5)

 s_j = (c_ij * u_hat).sum(dim=1, keepdim=True)

 v_j = v_j.squeeze(1)

if iteration < self.num_routes - 1:

 temp = u_hat.permute(0, 2, 3, 4, 1, 5)

 temp2 = v_j.unsqueeze(5)

 a_ij = torch.matmul(temp, temp2).squeeze(5) # dot product here

 a_ij = a_ij.permute(0, 4, 1, 2, 3)

 b_ij = b_ij + a_ij.mean(dim=0)

return v_j

Dot product- sum out input capsule dim

2 extra dimensions for routing

	Slide 1
	CNNs have drawbacks
	Ideas behind capsules
	Capsules capture pose
	Capsules capture pose
	How do capsules work?
	Dynamic routing between capsules
	Dynamic routing
	Softmax
	Dynamic routing
	Dot product
	Dynamic routing
	What is the purpose of the squash function?
	Dynamic routing
	Dynamic routing - update step
	CapsNet Architecture
	CapsNet architecture
	CapsNet architecture
	Capsules learn representations
	Loss function
	Convolutional Capsules
	Convolutional Capsules
	Convolutional Capsules
	Capsule applications
	Capsules for Object Segmentation
	Image synthesis with a convolutional capsule GAN
	Qualitative results - features
	Qualitative results - image synthesis variations
	Qualitative results - interpolation
	Qualitative results- intermediate features
	Code examples in pytorch
	Code – W matrix multiplication
	Code – dynamic routing
	Code – convolutional capsules
	Code – local dynamic routing

