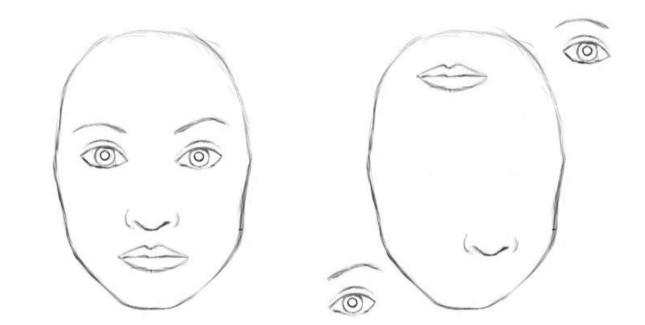


Capsules tutorial

Cher Bass cher.bass@kcl.ac.uk METRICS lab @ King's College

CNNs have drawbacks

- CNNs can learn low (edges, colours) and high level (mouth, nose, eyes) features
- Orientational and relative spatial relationships between features is not captured
- i.e. higher level features don't encode for pose (translation and rotation)
- Max pooling loses valuable information
- Requires large amounts of data and augmentation to learn



https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Ideas behind capsules

- 1. Can capture spatial relationships between objects/ features
 - Using high dimensional "W Matrix" to encode these relationships
 - Translation invariant
 - Known to need less data
- 2. Can group these features into "capsules"
 - Using "dynamic routing"
 - Routes features on the fly
 - Capsules encode for features closely related in feature space

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.

Capsules capture pose

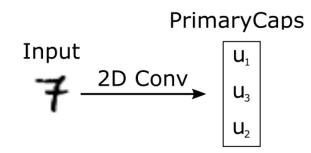
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

Capsules capture pose

Hinton, Geoffrey E., Sara Sabour, and Nicholas Frosst. "Matrix capsules with EM routing." (2018)

How do capsules work?

Dynamic routing between capsules



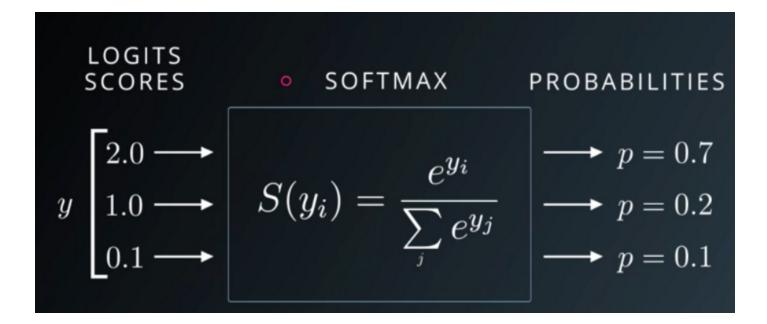
Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.

Dynamic routing

Procedure 1 Routing algorithm.

1: procedure ROUTING($\hat{u}_{j i}, r, l$)				
2:	for all capsule i in layer l and capsule j in layer $(l+1)$: $b_{ij} \leftarrow 0$.			
3:	for r iterations do			
4:	for all capsule <i>i</i> in layer <i>l</i> : $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$	▷ softmax computes Eq. 3		
5:	for all capsule j in layer $(l+1)$: $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j i}$			
6:	for all capsule j in layer $(l + 1)$: $\mathbf{v}_j \leftarrow \mathtt{squash}(\mathbf{s}_j)$	⊳ squash computes Eq. 1		
7:	for all capsule <i>i</i> in layer <i>l</i> and capsule <i>j</i> in layer $(l + 1)$	$: b_{ij} \leftarrow b_{ij} + \mathbf{\hat{u}}_{j i} \cdot \mathbf{v}_j$		
return \mathbf{v}_j				

Softmax

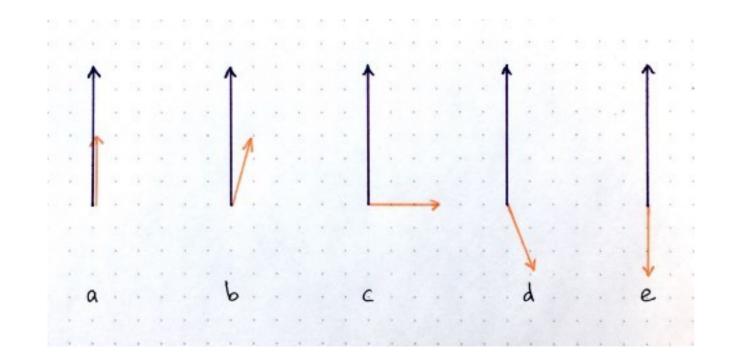


Dynamic routing

Procedure 1 Routing algorithm.

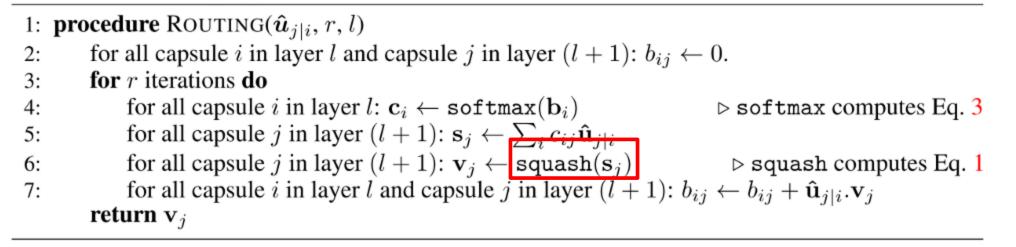
1: p	procedure ROUTING($\hat{u}_{j i}, r, l$)		
2:	for all capsule i in layer l and capsule j in layer $(l+1)$: $b_{ij} \leftarrow 0$.		
3:	for r iterations do	2	
4:	for all capsule <i>i</i> in layer <i>l</i> : $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$	▷ softmax computes Eq. 3	
5:	for all capsule j in layer $(l+1)$: $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j i}$		
6:	for all capsule j in layer $(l + 1)$: $\mathbf{v}_j \leftarrow \mathtt{squash}(\mathbf{s}_j)$	⊳ squash computes Eq. 1	
7:	for all capsule i in layer l and capsule j in layer $(l+1)$: $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j i} \cdot \mathbf{v}_j$		
	return \mathbf{v}_j		

Dot product



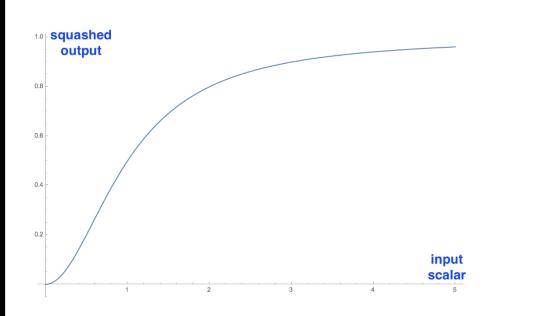
Dynamic routing

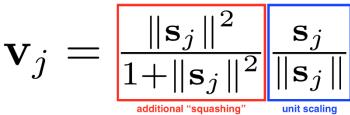
Procedure 1 Routing algorithm.



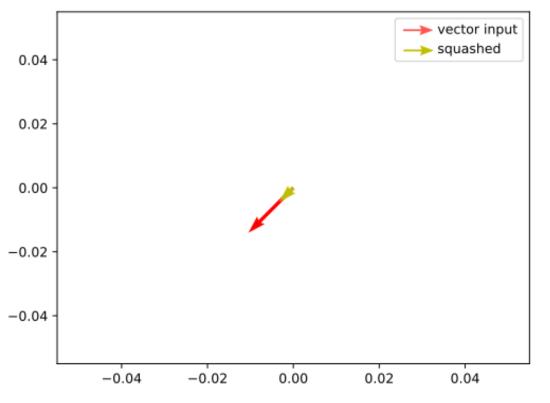
What is the purpose of the squash function? $\mathbf{v}_{i} = \mathbf{v}_{i}$

- Nonlinear activation
- Normalises the length between 0,1
- Does not change the direction of the vector
- This will allow the next step of the dynamic routing to not be affected by the nonlinear layer, as the direction of the vector is not changed





The effect of squash function on a vector

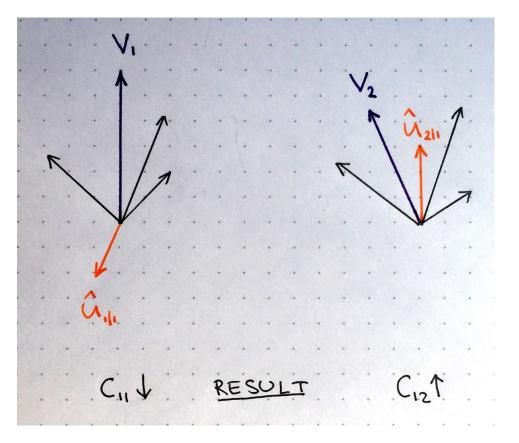


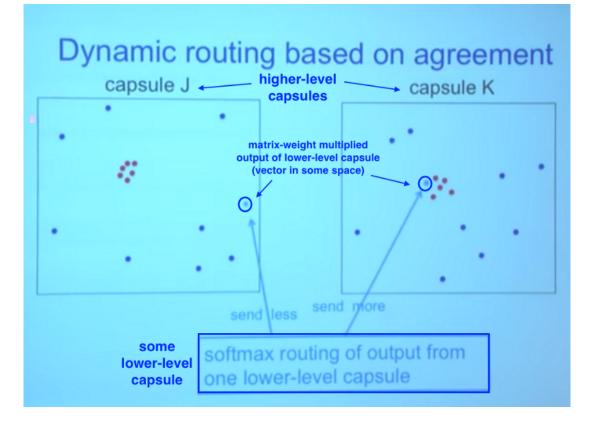
Dynamic routing

Procedure 1 Routing algorithm.

1: p	rocedure ROUTING($\hat{u}_{j i}, r, l$)		
2:	for all capsule i in layer l and capsule j in layer $(l+1)$: $b_{ij} \leftarrow 0$.		
3:	for r iterations do	2	
4:	for all capsule <i>i</i> in layer $l: \mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$	▷ softmax computes Eq. 3	
5:	for all capsule j in layer $(l+1)$: $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j i}$		
6:	for all capsule j in layer $(l + 1)$: $\mathbf{v}_j \leftarrow \mathtt{squash}(\mathbf{s}_j)$	squash computes Eq. 1	
7:	for all capsule i in layer l and capsule j in layer $(l + j)$	1): $b_{ij} \leftarrow b_{ij} + \mathbf{\hat{u}}_{j i} \cdot \mathbf{v}_j$	
	return \mathbf{v}_j		

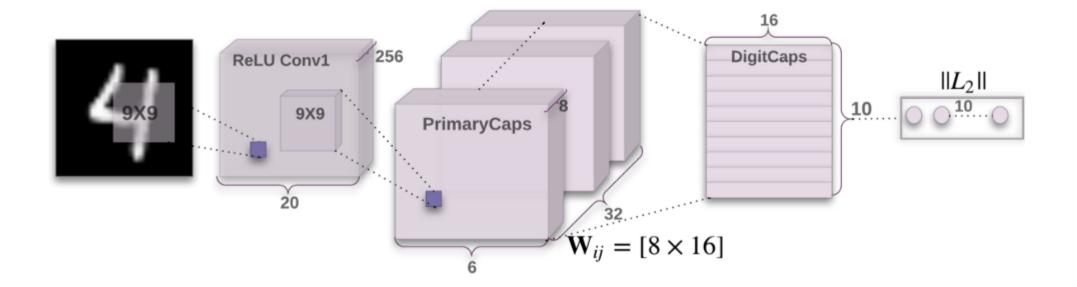
Dynamic routing - update step



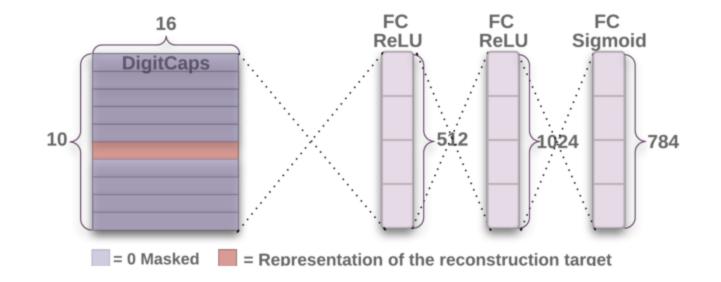


CapsNet Architecture

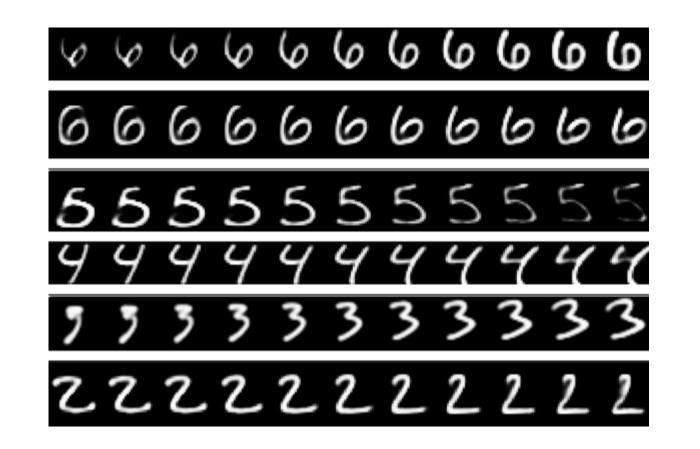
CapsNet architecture



CapsNet architecture

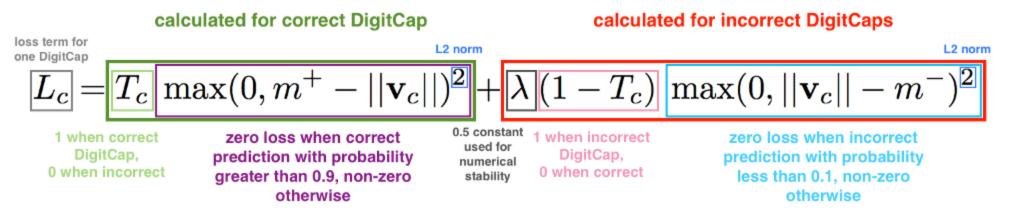


Capsules learn representations



Loss function

CapsNet Loss Function



Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps

Convolutional Capsules

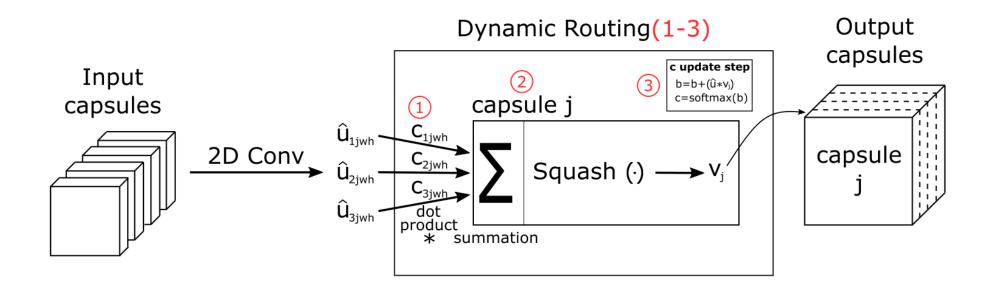
The original capsules were not used much in the literature due to high computational cost and slow training

- W matrix multiplication (high dimensional matrix) high memory requirement
- Dynamic routing slow to train
- Was only applied to small images (28x28)

Convolutional capsules:

- Reduced computation
- Can be applied to larger images
- Allow for image-to-image tasks
- Spatial filters allows analysis of features

Convolutional Capsules



LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

Convolutional Capsules

Algorithm 1: Convolutional Capsules + Dynamic RoutingInput: a, capsules in layer l; l, layer; r, iterations; bias; weightOutput: v_j , capsules in layer (l + 1)b shape = [in_caps, width, height, $\hat{u}_{i,ch_i,j,ch_j} \leftarrow bias_{j \times ch_j} + \sum_{n=0}^{ch_i} weight_{j \times ch_j,n} * a_n$ b shape = [in_caps, width, height,for all capsules i in layer l and capsules j in layer (l + 1): $b_{ij} \leftarrow 0$ for 1 to r dofor all capsules i in layer l and capsule j in layer (l + 1): $c_{ij} \leftarrow softmax(b_{ij}) > Eq. 4$ for all capsules j in layer (l + 1): $s_j \leftarrow \sum_i c_{ij} \hat{u}_{ij}$ request = Eq. 5for all capsules i in layer l and capsule j in layer (l + 1): $b_{ij} \leftarrow b_{ij} + \hat{u}_{ij} \cdot v_j$ end

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

Capsule applicatic

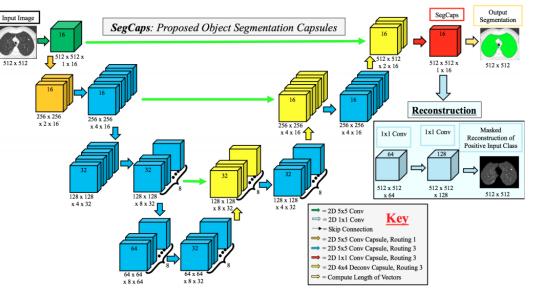
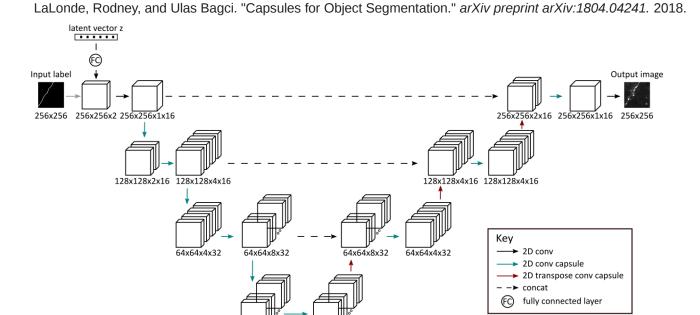


Figure 2: The proposed SegCaps architecture for object segmentation.

Conditional image synthesis

Segmentation

Classification (MNIST)



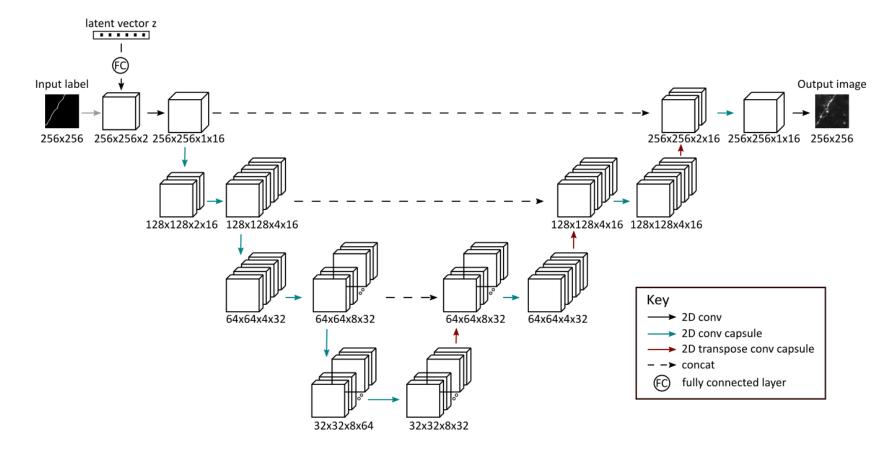
Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." *International Conference on Medical Imaging with Deep Learning*. 2019.

32x32x8x32

32x32x8x64

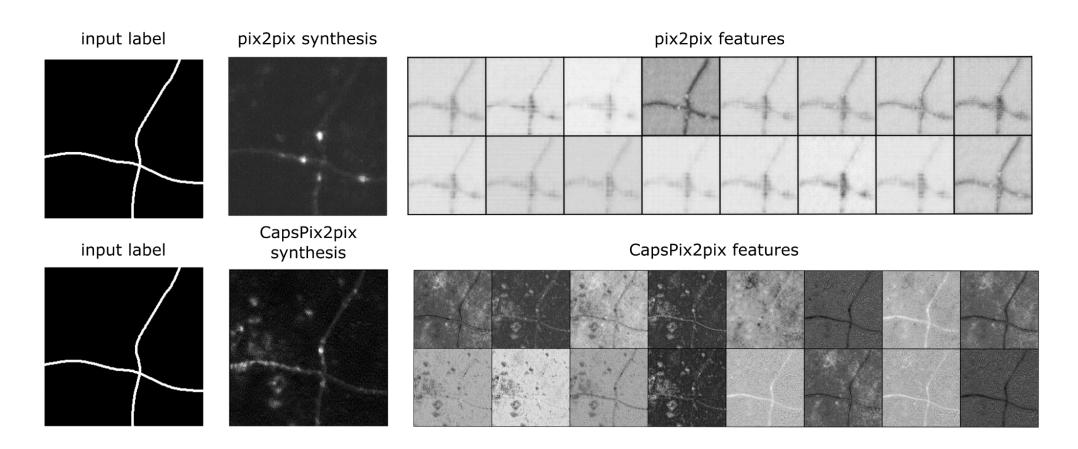
Capsules for Object Segmentation

Image synthesis with a convolutional capsule GAN

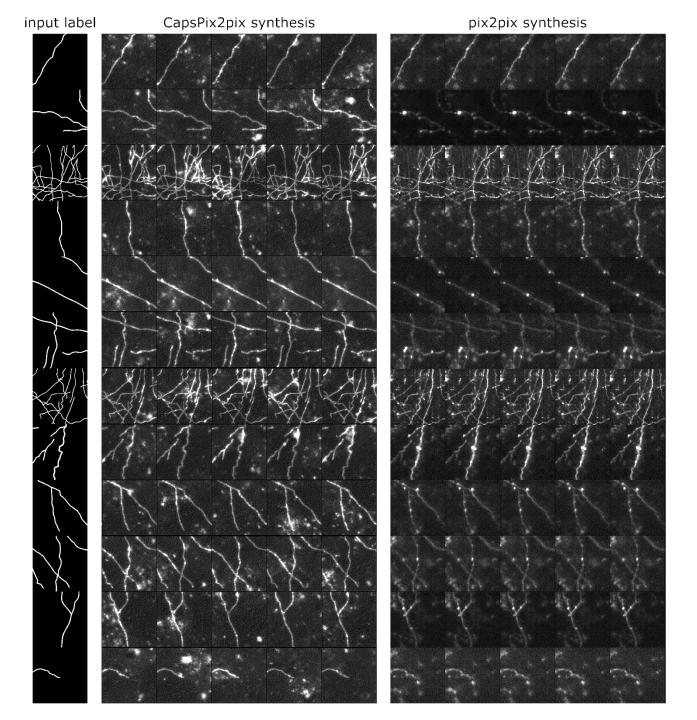


Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." International Conference on Medical Imaging with Deep Learning. 2019.

Qualitative results - features

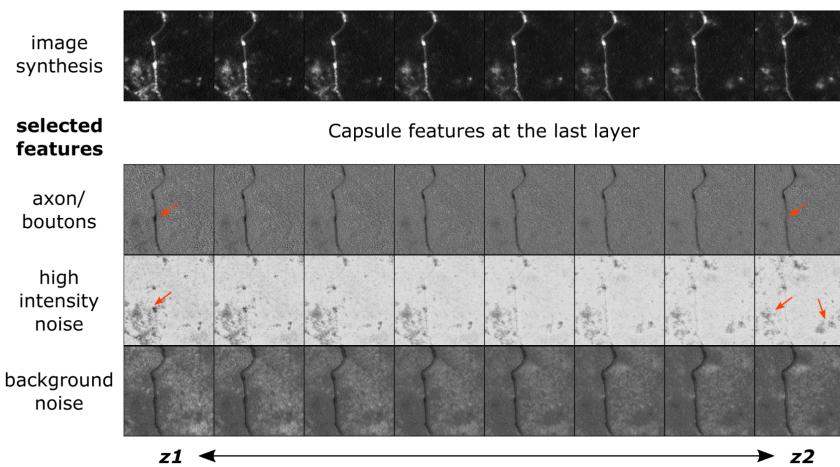


Qualitative results - image synthesis variations

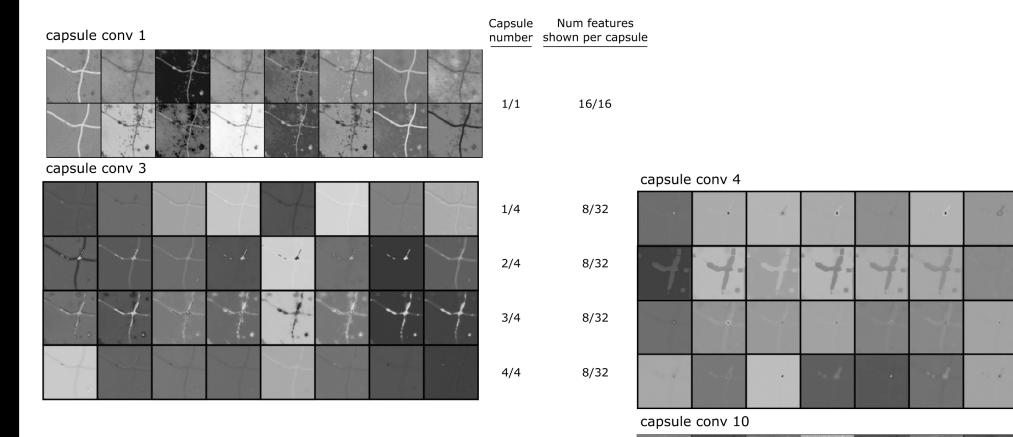


Qualitative results - interpolation

Interpolation between 2 random z vectors



Qualitative results- intermediate features



 1/8
 8/32

 2/8
 8/32

 3/8
 8/32

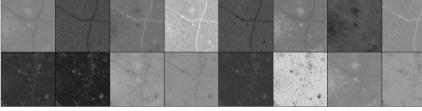
 4/8
 8/32

Num features

number shown per capsule

Capsule

1/1



16/16

Code examples in pytorch

Code – W matrix multiplication

def forward(self, x):

batch_size = x.size(0)

x = torch.stack([x] * self.num_capsules, dim=2).unsqueeze(4)

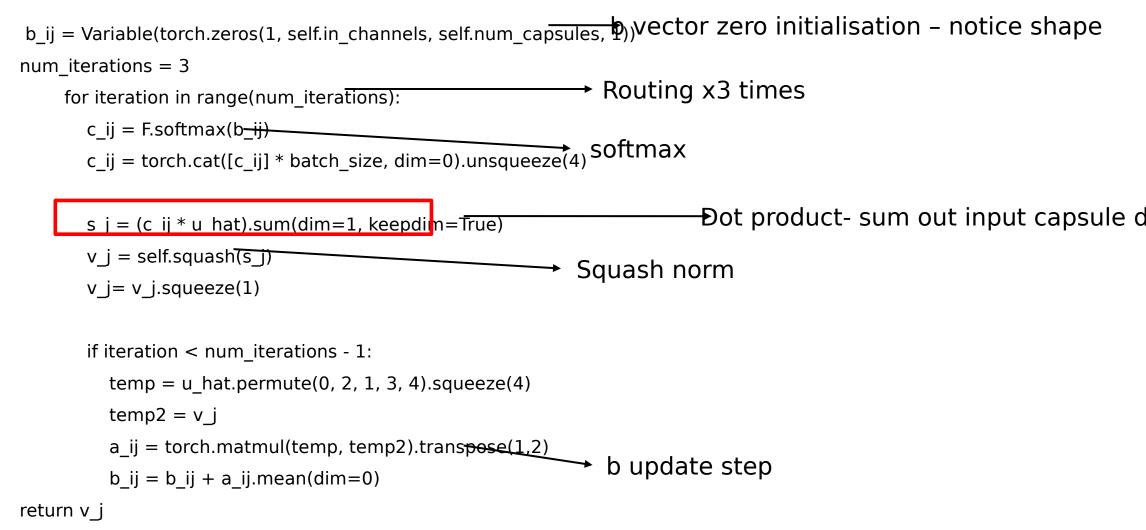
x = x.permute(0, 3, 2, 1, 4)

W = torch.cat([self.W] * batch_size, dim=0)

<u>u hat = torch.matmul(W, x)</u>

"W Matrix" multiplication

Code – dynamic routing



Code – convolutional capsules

def forward(self, x):

batch_size = x.size(0)
in_width, in_height = x.size(3), x.size(4) x = x.view(batch size*self.in_capsules, self.in_channels, in_width, in_height) u hat = self conv2d(x)

out_width, out_height = u_hat.size(2), u_hat.size(3)

u_hat = u_hat.view(batch_size, self.in_capsules, out_width, out_height, self.out_capsules, self.out_channels)

Code – local dynamic routing

b_ij = Variable(torch.zeros(1, self.in_capsules, out_width, out_height, self.out_capsules))

→2 extra dimensions for routing

Dot product- sum out input capsule c

for iteration in range(self.num_routes):

c_ij = F.softmax(b_ij, dim=1)

c_ij = torch.cat([c_ij] * batch_size, dim=0).unsqueeze(5)

s_j = (c_ij * u_hat).sum(dim=1, keepdim=True)

```
v_j = v_j.squeeze(1)
```

```
if iteration < self.num_routes - 1:
    temp = u_hat.permute(0, 2, 3, 4, 1, 5)
    temp2 = v_j.unsqueeze(5)
    a_ij = torch.matmul(temp, temp2).squeeze(5) # dot product here
    a_ij = a_ij.permute(0, 4, 1, 2, 3)
    b_ij = b_ij + a_ij.mean(dim=0)
```

ratura vi