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CNNs have drawbacks

■ CNNs can learn low (edges, 
colours) and high level (mouth, 
nose, eyes) features 

■ Orientational and relative spatial 
relationships between features is 
not captured

■ i.e. higher level features don’t 
encode for pose (translation and 
rotation)

■ Max pooling loses valuable 
information 

■ Requires large amounts of data 
and augmentation to learn

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b



Ideas behind capsules

1. Can capture spatial relationships between objects/ features 

– Using high dimensional “W Matrix” to encode these relationships

– Translation invariant 

– Known to need less data 

2. Can group these features into “capsules”

– Using “dynamic routing”

– Routes features on the fly  

– Capsules encode for features closely related in feature space

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.



Capsules capture pose

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b



Capsules capture pose

Hinton, Geoffrey E., Sara Sabour, and Nicholas Frosst. "Matrix capsules with EM routing." 
(2018).



How do capsules work?



Dynamic routing between capsules

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in Neural Information Processing Systems. 2017.



Dynamic routing



Softmax
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Dot product



Dynamic routing



What is the purpose of the 
squash function?

• Nonlinear activation
• Normalises the length between 0,1
• Does not change the direction of the vector
• This will allow the next step of the dynamic 

routing to not be affected by the nonlinear layer, 
as the direction of the vector is not changed



Dynamic routing



Dynamic routing - update step



CapsNet Architecture 



CapsNet architecture



CapsNet architecture



Capsules learn representations



Loss function



Convolutional Capsules

The original capsules were not used much in the literature due to high computational cost 
and slow training

■ W matrix multiplication (high dimensional matrix) – high memory requirement

■ Dynamic routing – slow to train

■ Was only applied to small images (28x28)

Convolutional capsules:

■ Reduced computation

■ Can be applied to larger images

■ Allow for image-to-image tasks

■ Spatial filters allows analysis of features



Convolutional Capsules

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.



Convolutional Capsules

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

b shape = [in_caps, width, height, 
out_caps]



Capsule applications

■ Segmentation

■ Conditional image 
synthesis

■ Classification (MNIST)

LaLonde, Rodney, and Ulas Bagci. "Capsules for Object Segmentation." arXiv preprint arXiv:1804.04241. 2018.

Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." International 
Conference on Medical Imaging with Deep Learning. 2019.



Capsules for Object 
Segmentation



Image synthesis with a 
convolutional capsule GAN

Bass, Cher, et al. "Image synthesis with a convolutional capsule generative adversarial network." International Conference on 
Medical Imaging with Deep Learning. 2019.



Qualitative results - features



Qualitative 
results - image 
synthesis 
variations



Qualitative results - interpolation



Qualitative results- intermediate features



Code examples in pytorch



Code – W matrix multiplication

 def forward(self, x):

        batch_size = x.size(0)

        x = torch.stack([x] * self.num_capsules, dim=2).unsqueeze(4)

        x = x.permute(0, 3, 2, 1, 4)

        W = torch.cat([self.W] * batch_size, dim=0)

        u_hat = torch.matmul(W, x)

“W Matrix” multiplication



Code – dynamic routing
 b_ij = Variable(torch.zeros(1, self.in_channels, self.num_capsules, 1)) 

num_iterations = 3

        for iteration in range(num_iterations):

            c_ij = F.softmax(b_ij)

            c_ij = torch.cat([c_ij] * batch_size, dim=0).unsqueeze(4)

            s_j = (c_ij * u_hat).sum(dim=1, keepdim=True)

            v_j = self.squash(s_j)

            v_j= v_j.squeeze(1)

            if iteration < num_iterations - 1:

                temp = u_hat.permute(0, 2, 1, 3, 4).squeeze(4)

                temp2 = v_j

                a_ij = torch.matmul(temp, temp2).transpose(1,2)

                b_ij = b_ij + a_ij.mean(dim=0)

return v_j

b vector zero initialisation – notice shape

Routing x3 times 

softmax

Dot product- sum out input capsule dim

Squash norm

b update step



Code – convolutional capsules

 def forward(self, x):

        batch_size = x.size(0)

        in_width, in_height = x.size(3), x.size(4)

        x = x.view(batch_size*self.in_capsules, self.in_channels, in_width, in_height)

        u_hat = self.conv2d(x)

        out_width, out_height = u_hat.size(2), u_hat.size(3)

        u_hat = u_hat.view(batch_size, self.in_capsules, out_width, out_height,     
self.out_capsules, self.out_channels)

Weight sharing 
between capsules



Code – local dynamic routing
b_ij = Variable(torch.zeros(1, self.in_capsules, out_width, out_height, 
self.out_capsules))

 for iteration in range(self.num_routes):

            c_ij = F.softmax(b_ij, dim=1)

            c_ij = torch.cat([c_ij] * batch_size, dim=0).unsqueeze(5)

            s_j = (c_ij * u_hat).sum(dim=1, keepdim=True)

            v_j = v_j.squeeze(1)

if iteration < self.num_routes - 1:

                temp = u_hat.permute(0, 2, 3, 4, 1, 5)

                temp2 = v_j.unsqueeze(5)

                a_ij = torch.matmul(temp, temp2).squeeze(5) # dot product here

                a_ij = a_ij.permute(0, 4, 1, 2, 3)

                b_ij = b_ij + a_ij.mean(dim=0)

return v_j

 

Dot product- sum out input capsule dim

2 extra dimensions for routing
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